- Estatcamp: (16) 3376-2047 [email protected]
- [email protected] https://www.actionstat.com.br
Quando trabalhamos com mais de uma variável regressora, é muito importante verificar se essas variáveis explicativas são correlacionadas. Desta forma, se não houver nenhum relacionamento entre elas, dizemos que são ortogonais.
Na prática, é muito difícil que as variáveis de entrada sejam ortogonais e, felizmente, a falta de ortogonalidade não é séria. Mas se as variáveis forem muito correlacionadas, as inferências baseadas no modelo de regressão podem ser errôneas ou pouco confiáveis.
Por isso, é necessário verificar se as variáveis são altamente correlacionadas. Na literatura, os termos Colinearidade (Multicolinearidade) são utilizados para indicar a existência forte de correlação entre duas (ou mais) variáveis independentes. Entretanto, alguns autores designam de Colinearidade a existência de relação linear entre duas variável explicativa (matriz de correlação) e de Multicolinearidade a existência de relação linear entre uma variável explicativa e as demais.
Se a matriz X'X é singular, isto é, algumas variáveis explicativas são combinações lineares de outras, temos Multicolinearidade e não há Estimadores de Mínimos Quadrados único para os parâmetros. Se X'X é aproximadamente singular, temos Multicolinearidade aproximada.
O Portal Action é mantido pela Estatcamp - Consultoria Estatística e Qualidade, com o objetivo de disponibilizar uma ferramenta estatística em conjunto com uma fonte de informação útil aos profissionais interessados.