Referências

Você está aqui

[1] JAMES, B. Probabilidade: um curso em nível intermediário. Instituto de Matemática Pura e Aplicada, CNPq, 1981. v. 12.

[2] SHIRYAEV, Albert N. "Probability, volume 95 of Graduate texts in mathematics." (1996).

[3] ROSS, S. Introduction to probability models. 9nd. ed. 2009.

[4] TAYLOR, H.; KARLIN, S. An introduction to stochastic modeling. 1998.

[5] MORGADO, A.; CARVALHO, J.; CARVALHO, P.; FERNANDEZ, P. Análise combinatória e  probabilidade. Impa/vitae, 1991.

[6] HELLAND, I. Central limit theorems for martingales with discrete or continuous time. Scandinavian Journal of Statistics, p. 79?94,  1982

[7] DOOB, J.L.- Measure Theory. Springer-Verlag, N. York & Berlin, 1991.

[8] FELLER, W. - An Introduction to Probability Theory and Its Applications,  Volume II. Wiley, N. York, 1966.

[9] KOLMOGOROV, A.N.- Foundations of the Theory of Probability. Chelsea, N. York, 1950. Tradução para o inglês de Grundbegriffe der Wahrscheinlichkeitsrechnung (1933).

[10] Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30(1):175–193, 1906.

[11] Greene, William H. (2003). Econometric Analysis (5th ed.). Prentice Hall.

[12] Sylvia Frühwirth-Schnatter. Finite Mixture and Markov Switching Models. Springer Science & Business Media, 2006.

[13] SIJBERS, Jan et al. Maximum-likelihood estimation of Rician distribution parameters. IEEE Trans. Med. Imaging, v. 17, n. 3, p. 357-361, 1998.

[14] SIDDIQUI, M. M. Statistical inference for Rayleigh distributions. Journal of Research of the National Bureau of Standards, Sec. D, v. 68, 1964.

[15] TSAGRIS, Michail; BENEKI, Christina; HASSANI, Hossein. On the folded normal distribution. Mathematics, v. 2, n. 1, p. 12-28, 2014.

[16] VOLKSVAGEN AG. VW 101 31 - Process Capability Investigation for Measurable Characteristics. 2005.

[17] LEESE, S. J. Measurable selections and the uniformization of Souslin sets. American Journal of Mathematics, v. 100, n. 1, p. 19-41, 1978.

[18] DELLACHERIE, Claude; MEYER, Paul-André. Probabilit es et potentiel II. Hermann, Paris, 1980.

[19] KURATOWSKI, Kazimierz. Topology, volume I. PWN-Polish Scientific Publishers and Academic Press, Warsaw and New York, p. 16, 1966.

[20] ROGERS, Claude Ambrose. Analytic sets. Academic Pr, 1980.

[21] CHOQUET, Gustave. Theory of capacities. In: Annales de l'institut Fourier. 1954. p. 131-295.

[22] MARCZEWSKI, E. Ensembles independant et measures non separables. CR Acad. Sci Paris, v. 207, p. 768-770, 1938.

[23] BLACKWELL, David et al. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, v. 6, n. 1, p. 1-8, 1956.

[24] TORTRAT, A. Sur le support des lois indéfiniment divisibles dans les espaces vectoriels localement convexes. In: Annales de l'IHP Probabilités et statistiques. 1977. p. 27-42.

[25] PERVIN, William J. On separation and proximity spaces. The American Mathematical Monthly, v. 71, n. 2, p. 158-161, 1964.

[26] ROYDEN, Halsey Lawrence; FITZPATRICK, Patrick. Real analysis. New York: Macmillan, 1988.

[27] LEÃO JR, D.; FRAGOSO, M. D.; RUFFINO, P. R. C. (1999) - Characterizations of Radon spaces. Statistics & probability letters, v. 42, n. 4, p. 409-413.

[28] DE LA RUE, Thierry. Espaces de Lebesgue. In: Séminaire de Probabilités XXVII. Springer Berlin Heidelberg, 1993. p. 15-21.

[29] V. V. Sazonov (1965) - On perfect measures, Amer. Math. Soc. Transl. Series 2, Vol. 48, pp. 229-254.

[30] HALMOS, Paul R.; VON NEUMANN, John (1942) - Operator methods in classical mechanics, II. Annals of Mathematics, p. 332-350.

[31] RYLL-NARDZEWSKI, Czesław (1953). On quasi-compact measures. Fundamenta Mathematicae, v. 40, n. 1, p. 125-130.

[32] NEVEU, Jacques. Mathematical foundations of the calculus of probability. San Francisco: Holden-day, 1965.

[33]  J. L. DOOB (1984) - Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York

[34] BERTSEKAS, Dimitri P.; SHREVE, Steven E. Stochastic optimal control: The discrete time case. New York: Academic Press, 1978.

[35] DELLACHERIE, Claude; MEYER, Paul-Andre. Probabilites et Potentiel. Hermann, Paris, 1975. English transl., North-Holland, 1978.

[36] B. Jessen (1948) - On two notions of independent functions, Colloquium Mathematicum, Vol. 1, pp. 214-215.

[37] M. Jirina (1954) - Probabilités conditionnelles sur des algèbres à base dênombrable, Czechosloviak Math. J. , Vol. 4, pp. 372-380.

[38] B. W. Gnedenko and A. N. Kolmogorov (1949) - Limit Distribution of Sums of Independent Random Variables, (in Russian) Moscow-Leningrad. English Translation: Cambridge (1954).

[39] E. Marczewski (1954) - On Compact Measures, Fundamentae Mathematica. Vol. 40, pp. 113-124. 

[40] E. S.  Andersen e B. Jessen (1948) - On the introduction of measures in infinite product sets, Danske Vi. Selsk. Mat.-Fys. Medd., Vol.9, pp. 25-42.

[41] J. L. Doob (1948) - On a problem of Marczewski, Colloquium Mathematicum, Vol.1, pp. 216-217.

Probabilidades

Sobre o Portal Action

O Portal Action é mantido pela Estatcamp - Consultoria Estatística e Qualidade, com o objetivo de disponibilizar uma ferramenta estatística em conjunto com uma fonte de informação útil aos profissionais interessados.

Facebook

CONTATO

  •  Maestro Joao Seppe, 900, São Carlos - SP | CEP 13561-180
  • Telefone: (16) 3376-2047
  • E-Mail: [email protected]