1.4.1 - Teste de Dickey-Fuller Aumentado

Você está aqui

O teste de Dickey-Fuller Aumentado é conhecido na literatura como teste ADF(Augmented Dickey-Fuller) e requer o estudo sobre a seguinte regressão:

$$\Delta y_t = \beta_1 + \beta_2t + \delta y_{t-1} + \sum^m_{i=1}\alpha_i \Delta y_{t-i} + \varepsilon_t$$

onde $\beta_1$ é o intercepto, também denominado como drift da série; $\beta_2$ é o coeficiente de tendência; $\delta$ é o coeficiente de presença de raiz unitária e m é o número de defasagens tomadas na série.

Neste caso a hipótese nula é dada por $H_0: \delta = 0$

Fazemos uma regressão de $\Delta y_t$ em $y_{t-1}, \Delta y_{t-1}, \hdots, \Delta y_{t+p-1}$ e calculamos a estatística T dada por

$$T = \dfrac{\hat{\delta}}{se(\hat{\delta})}$$

onde $\hat{\delta}$ é um estimador para $\delta$ e, $se(\hat{\delta})$ é um estimador para desvio padrão do erro de $\delta$.

Os valores críticos da estatística $T$ foram tabelados por Dickey e Fuller através de simulação Monte Carlo e variam nos casos de presença somente de intercepto, presença somente de tendência e presença de ambos.

 

 

Séries Temporais

Sobre o Portal Action

O Portal Action é mantido pela Estatcamp - Consultoria Estatística e Qualidade, com o objetivo de disponibilizar uma ferramenta estatística em conjunto com uma fonte de informação útil aos profissionais interessados.

Facebook

CONTATO

  •  Maestro Joao Seppe, 900, São Carlos - SP | CEP 13561-180
  • Telefone: (16) 3376-2047
  • E-Mail: [email protected]